

# Year 12 Mathematics Specialist 3,4 Test 2 2021

## Section 1 Calculator Free Sketching Rational Graphs and Vectors in 3D Introduction

### STUDENT'S NAME

DATE: Monday 29 March

**TIME:** 19 minutes

**MARKS**: 19

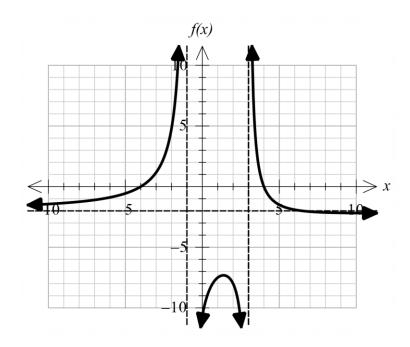
### **INSTRUCTIONS:**

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

### 1. (3 marks)

Determine the angle between the two planes  $r \cdot \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} = 4$  and  $r \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = 7$ . You may express


your answer in terms of an inverse trigonometric function.

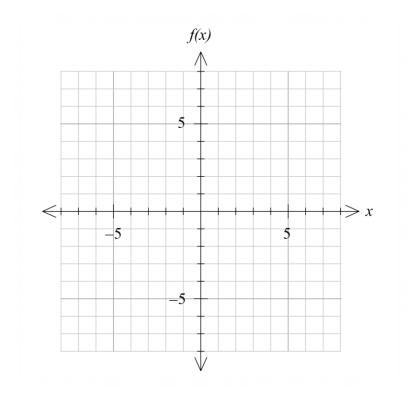
# 2. (4 marks)

Determine the domain and range for  $f(x) = \frac{1}{\sqrt{x-1}-1}$ 

## 3. (6 marks)

The graph of y = f(x) is show on the axes below. The defining rule is given by  $f(x) = \frac{-a(x^2 - b)}{(x + c)(x - d)}$  where *a*, *b*, *c* and *d* are positive constants.




Determine the value of the constants a, b, c and d. Justify your answers.

| а | b | С | d |
|---|---|---|---|
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

#### 4. (6 marks)

Sketch the function  $f(x) = \frac{x^3 - x}{(x+2)(x-1)}$ , showing all intercepts, holes, poles and asymptotes.

It is not necessary to identify any stationary points.





#### Year 12 Mathematics Specialist 3,4 Test 2 2021

#### Section 2 Calculator Assumed **Sketching Rational Graphs and Vectors in 3D Introduction**

### **STUDENT'S NAME**

DATE: Monday 29 March

**TIME:** 31 minutes

**MARKS**: 32

### **INSTRUCTIONS:**

| Standard Items: | Pens, pencils, drawing templates, eraser                                                        |
|-----------------|-------------------------------------------------------------------------------------------------|
| Special Items:  | Three calculators, notes on one side of a single A4 page (these notes to be handed in with this |
|                 | assessment)                                                                                     |

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

- 5. (3 marks)
  - Plane  $\Pi$  has the equation  $r \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = 5$  and a sphere has the vector equation  $|r \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}| = k$ (a) [2]

Describe geometrically what happens for different values of k.

If the cross product of two vectors is 0, describe the geometric relationship between the (b) two vectors. [1]

# 6. (10 marks)

A plane  $\Pi$  contains the three points (1, 2, 3), (4, 5, 6) and (-2, 3, 1)

(a) Determine a normal to the plane  $\Pi$ 

[3]

(b) Determine the equation of the plane  $\Pi$  in Cartesian form

[3]

A line,  $L_1$ , has Cartesian equation  $x-2 = y+3 = \frac{z-1}{2}$ .

(c) Determine the vector equation of the line in the form  $r = a + \lambda b$  [2]

(d) Determine the equation of the plane that is perpendicular to plane  $\Pi$  and contains line  $L_1$  [2]

## 7. (10 marks)

A sphere has equation  $x^2 + y^2 + z^2 - 2x + 4z = 0$  and a line has equation  $r = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$ 

(a) Determine the vector equation of the sphere.

(b) Determine the point(s) of intersection of the line and the sphere. [4]

[3]

### 8. (9 marks)

Plane  $\Pi$  has Cartesian equation y = 8x - 4z + 9.

(a) Determine a vector normal to the plane  $\Pi$ . [2]

A sphere of radius 9 is tangential to the plane  $\Pi$ . The point (-2,2,9) lies on the surface of the sphere. The centre of the sphere has coordinates (-9,-2,*k*), where *k* < 10.

(a) Determine the value of k

[3]

(c) Determine the coordinates of the point of intersection of the plane  $\Pi$  and the sphere.